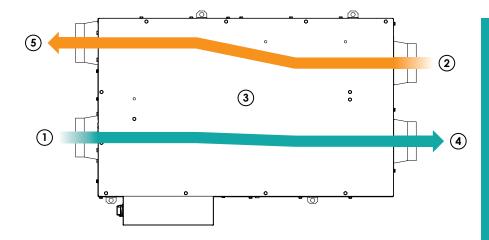

Energy Recovery Ventilator

Description


Indoor Air Quality (IAQ) is becoming a growing concern, as modern construction practices adapt to meet more stringent building energy codes. As building envelopes become tighter to improve energy efficiency, the unfortunate consequence is less air ventilation that promotes poor IAQ.

AirFixture Energy Recovery Ventilator systems not only increase ventilation to the occupied space and improve IAQ, they also optimize the efficiency of HVAC systems through a process called...

Sensible (dry air) or Latent (dry and humid air) heat exchange

Concept of Energy Recovery

- Outside Air (OA): Fresh unconditioned air enters ERV core where temperature and humidity are altered.
- 2. Return Air (RA): Heat and moisture are recovered from stale indoor/return air through Total Heat Exchange prior to being discharged to the outside air.
- 3. Total Energy Exchange (ERV): Stale indoor air is replenished with fresh, conditioned and filtered outdoor air presenting high quality supply air to the occupied space through sensible or latent energy exchange. Airstreams and air pollutants do not intermingle between static plates.
- **4.** Supply Air (SA): Fresh conditioned supply air enters the occupied space through air ducts.
- **5.** Exchange Air (EA): Polluted indoor air is discharged to the outdoors through air ducts.

Energy Recovery Ventilator

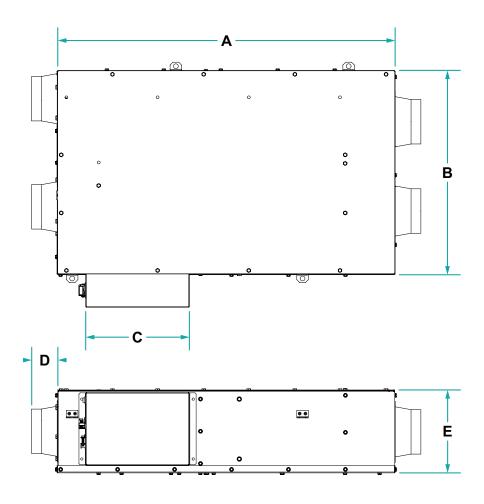
Features

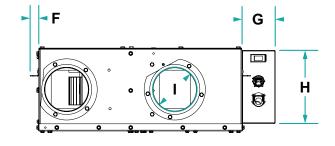
- Power rating: 100V/60Hz
- Two-way equivalent ventilation
- · Sensible / latent energy recovery core
- Air flow: 50–100 cfm (85–170 m³/hr) (3-speed)
- · Auto Defrost function
- · Double primary filters

- Options for direct BMS or FEC control
- Meets all ETL standards and building code requirements
- Simple ceiling installation
- · Simple maintenance
- 20 gauge galvanized steel casing, pre-painted black
- "Bathroom Light Switch" full ventilation control (optional)

Two-way equipment ventilation filters outdoor fresh air to the inside, while discharging indoor dirty air to the outside

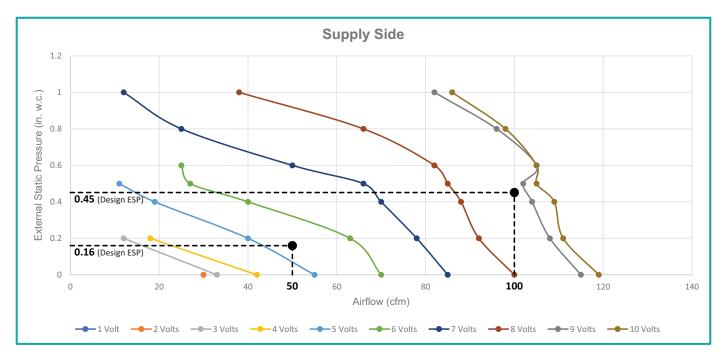
High performance polymer membrane enthalpy cross

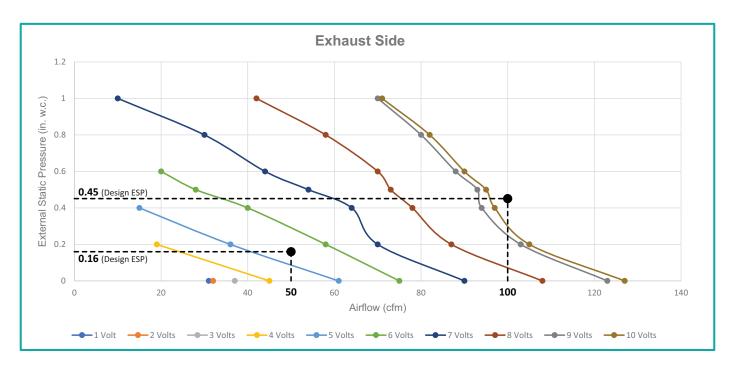

Primary filter captures hair, foreign bodies, and other large debris and particulates



Energy Recovery Ventilator

Dimensions


Unit	in	mm
Α	29.4	746.8
В	17.7 449.6	
С	9.0	228.6
D	2.3	58.4
E	7.2 182	
F	0.75 19.1	
G	2.9 73.7	
Н	6.4 162	
ı	Ø4.0	Ø101.6



Energy Recovery Ventilator

Air Flow Performance

Energy Recovery Ventilator

48.3

Return (RA)

64

75.0

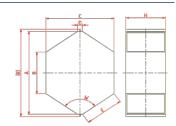
63.0

51.6

66.7

Recovery Specifications

Certified in accordance with the AHRI ERV Certification Program, which is based on AHRI Standard 1060. Certified units may be found in the AHRI Directory at www.ahridirectory.org.


Design Conditions					
	Summer		Winter		
	Outdoor	Return	Outdoor	Return	_
Standard Airflow	64	64	64	64	scfm
Dry Bulb Temp	95.0	75.0	35.0	70.0	°F
Wet Bulb Temp	78.0	63.0	33.0	58.0	ŀF

Warning

Relative Humidity

Product Dimensions H-Width 7.09 in A&C - Plate Size 14.41 in B - counter flow I 7.64 in D 0.39 in Е 7.80 in 128 ° W R (optional) 15.20 in **C-Plate Spacing** 0.10 in

Sections Cores per section **Rows Deep Total cores**

condensation in exhaust, winter condition

Airflow [scfm] Dry Bulb Temp [°F] Wet Bulb Temp [°F] Relative Humidity [%] Moisture Ratio [grains/lb] Enthalpy [Btu/lb] Energy flow rate [Btu/h]

Airflow [scfm] Dry Bulb Temp [°F] Wet Bulb Temp [°F] Relative Humidity [%] Moisture Ratio [grains/lb] Enthalpy [Btu/lb] Energy flow rate [Btu/h]

Outdoor (OA)		
64		
95.0		
78.0		
47.3		
117.4		
41		
11.885		

E-d4 (EA)
Exhaust (EA)
64
91.5
68.4
30.3
66.7
32
9 342

41	28
1,885	8,181
ust (EA)	Supply (SA)
64	64
91.5	78.5
68.4	73.7
30.3	79.9
30.3	19.9

Summer

	79.9
	117.4
	37
	10,70
Summer	
0.29	in.H2O
0.31	in.H2O
	0.29

1.000

5

	Summer
Supply pressure drop	0.29 in.H2O
Exhaust pressure drop	0.31 in.H2O
Sensible effectiveness	82.5 %
Latent effectiveness	0.0 %
Total effectiveness	31.6 %
Temperature ratio	82.5 %
Moisture recovery ratio	0.0 %
Enthalpy recovery Ratio	31.8 %
Supply air face velocity	185 fpm
Exhaust air face velocity	185 fpm
Moisture transferred	0.0 lb/h
Total energy saved	1,176 Btu/h
Moisture balance	0.00
Energy balance	0.00
Condensation rate	0.00 lb/h
Net supply airflow	64 scfm
Supply flow ratio	1.00
B	0.5 0.5 : 1100
Pressure differential	-0.5 0 0.5 in.H2O

Winter

Outdoor (OA)
64
35.0
33.0
81.8
24.4
12
3,495

Exhaust (EA)
64
41.1
41.1
100.0
38.0
16
4,525

25		
7,195		
Supply (SA)		
64		
63.9		
48.0		
27.8		
24.4		

19

5,503

Return (RA)

64

70.0

58.0

48.3

52.6

Winter

0.29	in.H2O
0.31	in.H2O
82.5	%
0.0	%
54.6	%
82.5	%
0.0	%
54.3	%
185	fpm
185	fpm
0.0	lb/h
2,009	Btu/h
0.23	
0.12	
0.60	lb/h
64	scfm
1.00	

EATR OACF